Sains Malaysiana 54(10)(2025): 2553-2566

http://doi.org/10.17576/jsm-2025-5410-17

 

Spatial Cluster Analysis of Human Trafficking in Asia Over a Six-Year Period

(Analisis Kluster Reruang Pemerdagangan Manusia di Asia Sepanjang Tempoh Enam Tahun)

 

SAFAT MOHAMMAD SAFAT, NUZLINDA ABDUL RAHMAN*, NURUL SYAFIAH ABD NAEEIM & FAUHATUZ ZAHROH SHAIK ABDULLAH

 

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

Received: 24 March 2025/Accepted: 27 August 2025

 

Abstract

Human trafficking is an important issue which affects many regions of the world. Understanding the spatial distribution of detected trafficking victims is essential to combating modern slavery. The main objective of this study was to determine the hotspot regions of trafficking victims in Asia. The yearly number of detected human trafficking victims for 49 countries, from the year 2016 to 2021, was analysed in this study. The ‘hidden nature’ of human trafficking leads to a substantial amount of missing data. To perform an in-depth spatial clustering analysis, the missing values were first addressed using several imputation techniques.  Spatial clustering techniques are then used to locate the high and low-rate clusters of victims in Asian countries. The results indicated that repeated high-rate clusters consist of countries known for being travel hubs. These clusters also include the bordering and nearby countries which are easily accessible by land transportation. Repeated low-rate clusters do not yield conclusive results yet they infer that the countries located in these clusters may require additional resources to accurately report on the statistics of human trafficking. Spatial clustering analysis was also conducted on the covariates of age, form of exploitation and the sex of the victims. The findings show that the comparison of clusters for different variables can help determine which specific populations are most susceptible to human trafficking with their respective locations. Enforcement agencies and nonprofit organizations can utilize these findings to strengthen their methods of combating human trafficking.

 

Keywords: Clustering; human trafficking; SaTScan; scan statistics; spatial analysis

 

Abstrak

Pemerdagangan manusia adalah isu penting yang memberi kesan kepada banyak rantau di dunia. Memahami taburan reruang bagi mangsa pemerdagangan manusia yang dikesan adalah penting dalam memerangi perhambaan moden. Objektif utama kajian ini adalah untuk menentukan kawasan panas bagi mangsa pemerdagangan manusia di Asia. Jumlah tahunan mangsa pemerdagangan manusia yang dikesan bagi 49 negara, dari tahun 2016 hingga 2021 telah dianalisis dalam kajian ini. ‘Sifat tersembunyipemerdagangan manusia menyebabkan sejumlah besar data tidak direkodkan. Bagi menjalankan analisis pengelompokan reruang yang mendalam, nilai yang hilang telah ditangani terlebih dahulu menggunakan beberapa teknik imputasi. Seterusnya, teknik pengelompokan reruang digunakan untuk mengenal pasti pengelompokan kadar tinggi dan rendah mangsa di negara Asia. Keputusan menunjukkan bahawa kelompok kadar tinggi yang berulang terdiri daripada negara yang dikenali sebagai hab perjalanan. Kelompok ini juga merangkumi negara berjiran dan berhampiran yang mudah diakses melalui pengangkutan darat. Kelompok kadar rendah yang berulang tidak memberikan keputusan yang konklusif namun ia memberikan gambaran bahawa negara dalam kelompok ini mungkin memerlukan sumber tambahan untuk melaporkan statistik pemerdagangan manusia dengan lebih tepat. Analisis pengelompokan reruang turut dijalankan ke atas kovariat umur, bentuk eksploitasi dan jantina setiap mangsa. Penemuan menunjukkan bahawa perbandingan antara kelompok bagi pemboleh ubah yang berbeza dapat membantu menentukan populasi tertentu yang paling terdedah kepada pemerdagangan manusia berserta lokasi masing-masing. Agensi penguatkuasaan undang-undang dan organisasi bukan berasaskan keuntungan boleh menggunakan penemuan ini untuk memperkukuhkan kaedah mereka dalam memerangi pemerdagangan manusia.

 

Kata kunci: Analisis reruang; pemerdagangan manusia; pengelompokan; SaTScan; statistik imbasan

 

References

Abdurrob, A. & Kulldorff, M. 2016. SaTScan Tutorial #3 Advanced Options. Accessed 2nd September 2024. https://www.satscan.org/tutorials/advancedoptions/SaTScanTutorialAdvancedOptions.pdf

AlQadi, H., Bani Yaghoub, M., Wu, S., Balakumar, S. & Francisco, A. 2022. Prospective spatial-temporal clusters of COVID-19 in local communities: Case study of Kansas City, Missouri, United States. Epidemiology and Infection 151: e178.

Andridge, R.R. & Little, R.J.A. 2010. A review of hot deck imputation for survey non-response. International Statistical Review 78(1): 40-64.

Boba, R. 2001. Introductory Guide to Crime Analysis and Mapping. Washington: U.S. Dept. of Justice.

Burgess, M. 2011. Understanding crime hotspot maps. Crime and Justice Statistics. Issue paper No. 60.

Burke, M.C. 2022. Human Trafficking Interdisciplinary Perspectives. 3rd ed. New York: Routledge.

Curran, J.M. 2013. The frequentist approach to forensic evidence interpretation. In Encyclopedia of Forensic Sciences, edited by Siegel, J., Saukko, P. & Houck, M. London: Elsevier, Academic Press. pp. 286-291.

Dakua, T., Rahaman, M. & Das, K.C. 2023. An analysis of the spatial and temporal variations of human trafficking in India. Cogent Social Sciences 10(1): 2293315.

David, F., Latham-Sprinkle, J., Bryant, K. & Larsen, J. 2019. Migrants and Their Vulnerability to Human Trafficking, Modern Slavery and Forced Labour. London: International Organization for Migration.

Edens, C., Alden, N.B., Danila, R.N., Fill, M.-M.A., Gacek, P., Muse, A., Parker, E., Poissant, T., Ryan, P.A., Smelser, C., Angelo, T. & Schrag, S.J. 2019. Multistate analysis of prospective Legionnaires’ disease cluster detection using SaTScan, 2011-2015. PLoS ONE 14(5): e0217632.

Fischer, M.M. & Getis, A. 2010. Handbook of Applied Spatial Analysis Software Tools, Methods and Applications. 1st ed. Berlin: Springer.

Francis, S.S., Enders, C., Hyde, R., Gao, X., Wang, R., Ma, X., Wiemels, J.L., Selvin, S. & Metayer, C. 2020. Spatial-temporal cluster analysis of childhood cancer in California. Epidemiology 31(2): 214-223.

Global Report on Trafficking in Persons. 2022. Accessed 16th August 2024. https://www.unodc.org/documents/data-and-analysis/glotip/2022/GLOTiP_2022_web.pdf

Jung, I., Kulldorff, M. & Richard, O.J. 2010. A spatial scan statistic for multinomial data. Statistics in Medicine 29(18): 1910-1918.

Kangaspunta, K. 2003. Mapping the inhuman trade: Preliminary findings of the database on trafficking in human beings. Forum on Crime and Society 3(1&2): 81-103.

Knox, E.G. 1989. Detection of clusters. In Methodology of Enquiries into Disease Clustering, edited by Elliot, P. London: Small Area Health Statistics Unit 17(1): 20.

Kulldorff, M. 2022. SaTScan™ User Guide for version 10.1. (2022). Accessed 16th August 2024.

https://www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download

Leach, R. 2022. Ending demand for modern-day slavery: An analysis of human trafficking in the global marketplace. Indiana Journal of Global Legal Studies 29(1): 232-259.

Li, T., He, J.G., Yang, C.H., Li, J., Xiao, Y., Li, Y.K., Chen, C. & Wu, J.L. 2020. A comparative study on SaTScan and FleXScan software for spatial clustering analysis regarding the incidence of pulmonary tuberculosis. Zhonghua Liu Xing Bing Xue Za Zhi41(2): 207-212.

Maimon, O. & Rokach, L. 2010. Data Mining and Knowledge Discovery Handbook. 2nd ed. Springer.

Mohd Izham bin Mohd Jaya. 2018. Cold deck missing value imputation with a trust-based selection method of multiple web donors. PhD Thesis. Serdang: Universiti Putra Malaysia (Unpublished).

Naeeim, N.S.A. & Rahman, N.A. 2022. Spatio-temporal clustering analysis using two different scanning windows: A case study of dengue fever in Peninsular Malaysia. Spatial and Spatio-Temporal Epidemiology 41(4): 100496.

Purwaningsih, T. & Cintami, A. 2019. Analysis of factors affecting the area of forest and land fires in Indonesia uses spatial regression Geoda and SaTScan. Jurnal Informatika 12(2): 58.

Schabenberger, O. & Gotway, C.A. 2005. Statistical Methods for Spatial Data Analysis. 1st ed. New York: Chapman and Hall/CRC.

Smith, K. & Climer, S. 2024. Improving Data Cleaning Using Discrete Optimization. https://arxiv.org/abs/2405.00764

Spies, L. 2017. Possible imputation procedures for the Census 2021. In Work Session on Statistical Data Editing, 24-26 April 2017, Netherlands. The Hague: United Nations Economic Commission for Europe.

Statistics Canada. 2024. 3.4.4 Imputation. Accessed 16th August 2024. https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch3/imputation/5214784- eng.htm

Stimers, M., Lenagala, S., Haddock, B., Paul, B.K. & Mohler, R. 2022. Space-time clustering with the space-time permutation model in SaTScanTM applied to building permit data following the 2011 Joplin, Missouri Tornado. International Journal of Disaster Risk Science 13(6): 962-973.

UNODC. 2022. UNODC Research - Data Portal – Trafficking in Person. Accessed 16th August 2024. https://dataunodc.un.org/sites/dataunodc.un.org/files/metadata_trafficking_in_ persons.pdf

Weisbird, D.L. & McEwan, T. 2015. Introduction: Crime Mapping and Crime Prevention. PhD Thesis. Hebrew University of Jerusalem (Unpublished).

Xia, H., Li, G., Zhou, J., Yu, Y., Du, M. & Feng, C. 2022. Spatial and temporal patterns, influencing factors, and prevention and control measures of human trafficking in southwest China. Tropical Geography 42 (9): 1534-1546.

Ying, F.F. 2022. Spatio-temporal clustering analysis of COVID-19 cases in Johor. Master’s thesis. Universiti Sains Malaysia (Unpublished).

Zeoli, A.M., Pizarro, J.M., Grady, S.C. & Melde, C. 2012. Homicide as infectious disease: Using public health methods to investigate the diffusion of homicide. Justice Quarterly 31(3): 609-632.

Zhang, Z. 2016. Missing data imputation: Focusing on single imputation. Ann. Transl. Med. 4(1): 9.

 

*Corresponding author; email: nuzlinda@usm.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next